可燃冰与冰课题组
可燃冰与冰课题组logo


论文发表

2023年

149. Gao, J., et al., Selective Chiral Recognition between Amino Acids and Growing Gypsum Crystals. Langmuir , 2023. 39(36):12707 - 12714


148. Zheng, C., et al., Modular Design for Proteins Assembling into Antifouling Coatings: Case of Gold Surfaces. Langmuir , 2023. 39(27): 9290 - 9299


147. Tang, Y., et al., A Rational Design of Metal–Organic Framework Nanozyme with High-Performance Copper Active Centers for Alleviating Chemical Corneal Burns. Nano-Micro Letters , 2023. 15(1): 1-23


146. Zhou, Z., et al., Thermal Conductivity of Fivefold Twinned Silicon-Germanium Heteronanowires. Physical Chemistry Chemical Physics , 2023. 25(37), pp. 25368 - 25376


145. Zhang, Y., et al., Predicting Mechanical Properties of CO2 Hydrates: Machine Learning Insights from Molecular Dynamics Simulations. Journal of Physics: Condensed Matter , 2023. 36(1):5101


143. Lin, Y., et al., Adhesion strength of tetrahydrofuran hydrates is dictated by substrate stiffness. Petroleum Science , 2023. DOI: 10.1016/j.petsci.2023.08.009


142. Zeng, J., et al., Electric field as a crystallization switch of heterogeneous ice formation. Journal of Physics: Condensed Matter , 2023. 35(44): 445401


141. Ma, H., et al., Graphene Coating- and Electro-wetting Strategy for Micro/Nanostructured Surfaces. Journal of Molecular Liquids , 2023. 387(1):122567


141. Shi, Q., et al., Unconventional growth of methane hydrates: A molecular dynamics and machine learning study. Energy , 2023. 282(6964):128337


140. Lin, Y., et al., The Effect of Non-uniform Pitch Length and Spiraling Pathway on the Mechanical Properties of Coiled Carbon Nanotubes. International Journal of Mechanical Sciences , 2023. 257:108532


139. Xu, K., et al., Accurate prediction of heat conductivity of water by a neuroevolution potential. The Journal of Chemical Physics , 2023. 158(20): 4114


138. Zhao, J., et al.,Anti-interference Self-powered Acoustic Fabric for Complex Acoustic Environments. Nano Energy , 2023. 113:108534


137. Song, Z., et al., Hydrogen Diffusion in C1' Phase Clathrate Hydrate. Chinese Physics B , 2023. 32(6):6602


136. Liu, R., et al., Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science , 2023. 222:112105


135. Zhu, S., et al., Using Wool Keratin as a Structural Biomaterial and Natural Mediator to Fabricate Biocompatible and Robust Bioelectronic Platforms. Advanced Science , 2023. 10(11): 2207400


2022年

134. Zhou, Z., et al., Isotope Doping-Induced Crossover Shift in the Thermal Conductivity of Thin Silicon Nanowires. Journal of Physics: Condensed Matter , 2022. 35(8): 5702


133. Xu, K., et al., Mechanical Enhancement and Weakening in Mo6S6 Nanowire by Twisting. Chinese Physics B , 2022. 32(4): 6204


132. Zeng, J., et al., Cage recognition algorithms of clathrate hydrate and their applications. Journal of Crystal Growth , 2022. 600: 126897


131. Xu, K., et al., Gradient nano-grained graphene as 2D thermal rectifier: A molecular dynamics based machine learning study. Applied Physics Letters , 2022. 121(13): 133501


130. Lin, Y., et al., Interfacial Mechanical Properties of Tetrahydrofuran Hydrate-Solid Surfaces: Implications for Hydrate Management. Journal of Colloid and Interface Science , 2022. 629(1), pp. 326 - 335


129. Liu, J., et al., Brittle and ductile behavior in monolayer MoS2. Materials Today Nano , 2022. 20(1): 100245


128. Fu, R., et al., Size-dependent Melting of Onion-like Fullerenic Carbons: A Molecular Dynamics and Machine Learning Study. Journal of Physics Condensed Matter , 2022. 34(42): 5402


127. Liu, J., et al., Mechanical Destabilization and Cage Transformations in Water Vacancy-Contained CO2 Hydrates. ACS Sustainable Chemistry & Engineering , 2022. 10(31): 10339 – 10350


126. Liu, T., et al., Graphene-based woven filter membrane with excellent strength and efficiency for water desalination. Desalination , 2022. 533: 115775


125. Wang, P., et al., Mechanical Stability of Fluorinated-Methane Clathrate Hydrates. Journal of Molecular Liquids , 2022. 360(6964): 119553


124. Liang, T., et al., Abnormally High Thermal Conductivity in Fivefold Twinned Diamond Nanowires. Materials Today Physics , 2022. 25(4): 100705


123. Xu, Y., et al., Machine Learning Assisted Insights into the Mechanical Strength of Nanocrystalline Graphene Oxide. 2D Materials , 2022. 9(3): 5002


122. Fu, R., et al., Thermally induced hex-graphene transitions in 2D carbon crystals. Nanotechnology Reviews , 2022. 11(1): 1101 - 1114


121. Lin, Y., et al., Strengthening and weakening of methane hydrate by water vacancies. Advences in Geo-Energy Research , 2022. 6(1): 23 - 37


120. Zhang, Z., et al., Simultaneous stiffening and strengthening of nanodiamond by fivefold twins. MRS Bulletin , 2022. 47(12), pp. 219 - 230


119. Xu, K., et al., Role of mechanical deformation in the thermal transport of sI-type methane hydrate. Physical Chemistry Chemical Physics , 2022. 24(24), pp. 5479 - 5488


118. Xu, K., et al., Structural and mechanical stability of clathrate hydrates encapsulating monoatomic guest species. Journal of Molecular Liquids , 2022. 347: p. 118391.


117. Xu, K., et al., Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS2. Nanoscale , 2022. 14(4): p. 1241-1249.


116. Xu, K., et al., Efficient mechanical modulation of the phonon thermal conductivity of Mo6S6 nanowires. Nanoscale , 2022. 14(8): p. 3078-3086.


115. Sharifian, A., et al., Insights into Thermal characteristics of Spiral Carbon-based Nanomaterials: From Heat Transport Mechanisms to Tunable Thermal Diode Behavior. International Journal of Heat and Mass Transfer , 2022. 189(15): 122719


114. Liu, Y., et al., HTR: An ultra-high speed algorithm for cage recognition of clathrate hydrates. Nanotechnology Reviews , 2022. 11(1): p. 699 - 711.


113. Lin, Y., et al., Strengthening and weakening of methane hydrate by water vacancies. Advances in Geo-Energy Research , 2022. 6(1): p. 23 - 37.


112. Li, T., et al., Dual-ionic hydrogels with ultralong anti-dehydration lifespan and superior anti-icing performance. Applied Materials Today , 2022. 26: p. 101367.


2021年

111. Zhuo, Y., et al., Simultaneously Toughening and Stiffening Elastomers with Octuple Hydrogen Bonding. Advanced Materials, 2021. 33(23): p. 2008523.


110. Zhu, J., et al., Carbon clathrates as strong lightweight structures. International Journal of Mechanical Sciences , 2021. 202, p. 106509.


109. Zhou, A.a., et al., Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization. Carbon , 2021. 184: p. 43-52.


108. Zheng, C., et al., Effect of Graphene on Ice Polymorph. Crystals , 2021. 11(9).


107. Yu, H., et al., Oxygen functionalization-induced crossover in the tensile properties of the thinnest 2D Ti2C MXene. Journal of Materials Chemistry C , 2021. 9(7): p. 2416 - 2425.


106. Yang, L., et al., Mechanical ductile detwinning in CH3NH3PbI3 perovskite. Physical Chemistry Chemical Physics , 2021. 23(38): p. 21863 - 21873.


105. Yang, L., et al., Strengthening and Weakening by Dislocations in Monolayer MoS2. Chemistry of Materials , 2021. 33(22): p. 8758 - 8767.


104. Xu, Q., et al., How Does the Step on Graphite Surface Impact Ice Nucleation? Crystal Growth & Design , 2021. 21(8): p. 4354 - 4361.


103. Wang, C., et al., Classical nucleation theory of ice nucleation: Second-order corrections to thermodynamic parameters. The Journal of Chemical Physics , 2021. 154(23): p. 234503.


102. Qin, J.-K., et al., Mechanical Anisotropy in Two-Dimensional Selenium Atomic Layers. Nano Letters , 2021. 21(19): p. 8043 - 8050.


101. Lu, H., et al., Effect of interfacial dipole on heterogeneous ice nucleation. Journal of Physics: Condensed Matter , 2021. 33(37): p. 375001.


100. Liu, J., et al., Fracture mechanics of methane clathrate hydrates. Acta Mechanica Sinica , 2021. 37(9): p. 1387 - 1394.


99. Lin, Y., et al., Role of nanotube chirality on the mechanical characteristics of pillared graphene. Mechanics of Materials , 2021. 162: p. 104035.


98. Liang, L., et al., Direct proof of soft knock-on mechanism of ion permeation in a voltage gated sodium channel. International Journal of Biological Macromolecules , 2021. 188: p. 369 - 374.


97. Karbaschi, T., et al., Conical coiled carbon nanotubes with highly controllable mechanical properties. Materials Today Communications , 2021. 29: p. 102927.


96. Huang, Q.-Q., et al., Spontaneous Adsorption of Graphene Oxide on Multiple Polymeric Surfaces. Langmuir , 2021. 37(29): p. 8829 - 8839.


95. Fu, Y., et al., Tensile mechanical characteristics of ultra-thin carbon sulfur nanothreads in orientational order. Carbon , 2021. 184: p. 146 - 155.


94. Fan, Z., et al., A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery. Energy Storage Materials , 2021. 39: p. 1 - 10.


93. Chen, Q., et al., Release of an Encapsulated Peptide from Carbon Nanotubes Driven by Electric Fields: A Molecular Dynamics Study. ACS Omega , 2021. 6(41): p. 27485 - 27490.


92. Shao, C. , et al., Oriented Crystallization of Hydroxyapatite in Self-Assembled Peptide Fibrils as a Bonelike Material. ACS biomaterials science & engineering , 2021. 6(41): p. 27490.


91. Li, Z.-Z. , et al., Bioinspired Compartmentalization Strategy for Coating Polymers with Self-Organized Prismatic Films. Chem Mater , 2021, 33 (23), 9240 - 9251.


90. Cao, P. and J. Wu, Self-Assembly of MoS2 Monolayer Sheets by Desulfurization. Langmuir , 2021. 37(16): p. 4971 - 4983.


89. Cao, P., et al., Mechanical creep instability of nanocrystalline methane hydrates. Physical Chemistry Chemical Physics , 2021. 23(5): p. 3615 - 3626.


88. Cao, P., et al., Mechanical Instability of Methane Hydrate–Mineral Interface Systems. ACS Applied Materials & Interfaces , 2021. 13(38): p. 46043 - 46054.


2020年

87. Zhao, Y., et al., Mechanical properties of helically twisted carbyne fibers. International Journal of Mechanical Sciences , 2020. 186: p. 105823.


86. Tao, J. H. , et al., Controlling Metal-Organic Framework/ZnO Heterostructure Kinetics through Selective Ligand Binding to ZnO Surface Steps. Chem Mater , 2020, 32 (15), 6666 - 6675.


85. Liu, Z. M. , et al., Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. PNatl Acad Sci USA , 2020, 117 (7), 3397 - 3404.


84. Xu, K., et al., Mechanical Properties of CH4–CO2 Heteroclathrate Hydrates. Energy & Fuels , 2020. 34(11): p. 14368 - 14378.


83. Wu, J., et al., CO2 wetting on pillar-nanostructured substrates. Nanotechnology , 2020. 31(24): p. 245403.


82. Wu, J., et al., Supergiant elasticity and fracture of 3D spirally wound MoS2. International Journal of Fracture , 2020. 223(1): p. 39 - 52.


81. Wang, C., et al., Partially unzipping carbon nanotubes: A route to synchronously improve fracture strength and toughness of nanocomposites inspired by pinning effect of screw. Materials Today Communications , 2020. 25: p. 101355.


80. Tang, W., et al., Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites. Acta Mechanica Sinica , 2020. 36(4): p. 855 - 865.


79. Shen, J., et al., A molecular dynamics study on water desalination using single-layer MoSe2 nanopore. Journal of Membrane Science , 2020. 595: p. 117611.


78. Li, T., et al., Self-Deicing Electrolyte Hydrogel Surfaces with Pa-level Ice Adhesion and Durable Antifreezing/Antifrost Performance. ACS Applied Materials & Interfaces , 2020. 12(31): p. 35572 - 35578.


77. Gong, H., et al., Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams. Soft Matter , 2020. 16(17): p. 4324 - 4338.


76. Fu, Y., et al., The effects of morphology and temperature on the tensile characteristics of carbon nitride nanothreads. Nanoscale , 2020. 12(23): p. 12462 - 12475.


75. Ding, P., et al., Role of geometric shapes on the load transfer in graphene-PMMA nanocomposites. Computational Materials Science , 2020. 184: p. 109863.


74. Cao, P., et al., Mechanical Response of Nanocrystalline Ice-Contained Methane Hydrates: Key Role of Water Ice. ACS Applied Materials & Interfaces , 2020. 12(12): p. 14016 - 14028.


2019年

73. Zhao, Y., et al., Molecular-dynamics study of the carbon nanotube mechanical metahelix. Carbon , 2019. 155: p. 334 - 343.


72. Xiong, K., et al., Drug Carrier-Oriented Polygeline for Preparing Novel Polygeline-Bound Paclitaxel Nanoparticles. Journal of Pharmaceutical Sciences , 2019. 108(6): p. 2012 - 2021.


71. Wu, J., et al., Topology and polarity of dislocation cores dictate the mechanical strength of monolayer MoS2. Applied Materials Today , 2019. 15: p. 34 - 42.


70.Liu, Z. M. , et al., Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature , 2019, 574 (7778), 394.


69. Wu, J., et al., Contact Angle and Condensation of a CO2 Droplet on a Solid Surface. The Journal of Physical Chemistry C , 2019. 123(1): p. 443 - 451.


68. Sharifian, A., et al., Role of Chemical Doping in Large Deformation Behavior of Spiral Carbon-Based Nanostructures: Unraveling Geometry-Dependent Chemical Doping Effects. The Journal of Physical Chemistry C , 2019. 123(31): p. 19208 - 19219.


67. Sharifian, A., et al., Insight into Geometry-Controlled Mechanical Properties of Spiral Carbon-Based Nanostructures. The Journal of Physical Chemistry C , 2019. 123(5): p. 3226 - 3238.


66. Sharifian, A., et al., How to characterize interfacial load transfer in spiral carbon-based nanostructure-reinforced nanocomposites: is this a geometry-dependent process? Physical Chemistry Chemical Physics , 2019.21(43): p. 23880 - 23892.


65. Shao, C., et al., Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Science Advances , 2019. 5(8): p. eaaw9569.


64. Liu, X., et al., Self-recoverable Pd–Ru/TiO2 nanocatalysts with ultrastability towards ethanol electrooxidation. Nanoscale , 2019. 11(7): p. 3311 - 3317.


63. Gao, M., et al., Resonant light absorption and plasmon tunability of lateral triangular Au nanoprisms array. Physics Letters A , 2019. 383(31): p. 125881.


62. Fang, B., et al., The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study. Fuel , 2019. 258: p. 116106.


2018年

61. Zhao, H., et al., Anomalous thermal stability in supergiant onion-like carbon fullerenes. Carbon , 2018. 138: p. 243 - 256.


60. Zhang, Z. and X.-Y. Liu, Control of ice nucleation: freezing and antifreeze strategies. Chemical Society Reviews , 2018. 47(18): p. 7116 - 7139.


59. Xu, X., et al., Enhanced Exfoliation of Biocompatible MoS2 Nanosheets by Wool Keratin. ACS Applied Nano Materials , 2018. 1(10): p. 5460 - 5469.


58. Wu, J., et al., Nanotube-chirality-controlled tensile characteristics in coiled carbon metastructures. Carbon , 2018. 133: p. 335 - 349.


57. Wu, J., et al., Nature-inspired entwined coiled carbon mechanical metamaterials: molecular dynamics simulations. Nanoscale , 2018. 10(33): p. 15641 - 15653.


56. Wu, J., et al., Grain-Size-Controlled Mechanical Properties of Polycrystalline Monolayer MoS2. Nano Letters , 2018. 18(2): p. 1543 - 1552.


55. Sui, C., et al., Directional sensing based on flexible aligned carbon nanotube film nanocomposites. Nanoscale , 2018. 10(31): p. 14938 - 14946.


54. Shi, Q., et al., Role of Guest Molecules in the Mechanical Properties of Clathrate Hydrates. Crystal Growth & Design , 2018. 18(11): p. 6729 - 6741.


53. Liu, M.-F., et al., Correlations of crystal shape and lateral orientation in bioinspired CaCO3 mineralization. CrystEngComm , 2018. 20(35): p. 5241 - 5248.


52. Han, Z., et al., Mechanical strength in hierarchically polycrystalline graphene with dislocation arrays-embedded grains. Materials Research Express , 2018. 5(11): p. 115019.


51. Cao, P., et al., Mechanical properties of bi- and poly-crystalline ice. AIP Advances , 2018. 8(12): p. 125108.


50. Cao, P., et al., Mechanical Properties of Methane Hydrate: Intrinsic Differences from Ice. The Journal of Physical Chemistry C , 2018. 122(51): p. 29081- 29093 .


2017年及以前年

49. Zhao, Y., et al., Carbon nanotubes kirigami mechanical metamaterials. Physical Chemistry Chemical Physics , 2017. 19(18): p. 11032 - 11042.


48. Lang, L. J. , et al., Pressing Carbon Nanotubes Triggers Better Ion Selectivity. J Phys Chem C , 2017, 121 (35), 19512 - 19518.


47. Xia, T. , et al., Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. Acs Applied Materials & Interfaces , 2017, 9 (26), 22037 - 22041.


46. Kong, Z. , et al., Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation. Journal of Molecular Modeling , 2017, 23 (4): 113.


45. Zhao, Y. , et al., Carbon nanotubes kirigami mechanical metamaterials. Phys Chem Chem Phys , 2017, 19 (18), 11032 - 11042.


44. Song, Y. , et al., Meso-Functionalization of Silk Fibroin by Upconversion Fluorescence and Near Infrared In Vivo Biosensing. Advanced Functional Materials , 2017, 27 (26): 1700628.


43. Wu, J., et al., Grain-size Induced Strengthening and Weakening of Dislocation-free Polycrystalline Gas Hydrates. Procedia IUTAM , 2017. 21: p. 11 - 16.


42. Sui, C., et al., Morphology-Controlled Tensile Mechanical Characteristics in Graphene Allotropes. ACS Omega , 2017. 2(7): p. 3977 - 3988.


41. Lv, R., et al., Polyacrylonitrile mesoporous composite membranes with high separation efficiency prepared by fast freeze-extraction process. Journal of Industrial and Engineering Chemistry , 2017. 49: p. 61 - 68.


40. Liang, L., et al., Pressing Carbon Nanotubes Triggers Better Ion Selectivity. The Journal of Physical Chemistry C , 2017. 121(35): p. 19512 - 19518.


39. Liang, L., et al., Computer simulation of water desalination through boron nitride nanotubes. Physical Chemistry Chemical Physics , 2017. 19(44): p. 30031 - 30038.


38. Jiang, W., et al., Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite. Journal of the American Chemical Society , 2017. 139(25): p. 8562 - 8569.


37. He, J., et al., Size-dependent Phase Transformation and Fracture of ZnO Nanowires. Procedia IUTAM , 2017. 21: p. 86 - 93.


36. Feng, C., et al., Morphology- and dehydrogenation-controlled mechanical properties in diamond nanothreads. Carbon , 2017. 124: p. 9 - 22.


35. Fang, B., et al., Modeling Thermodynamic Properties of Propane or Tetrahydrofuran Mixed with Carbon Dioxide or Methane in Structure-II Clathrate Hydrates. The Journal of Physical Chemistry C , 2017. 121(43): p. 23911 - 23925.


34. Liang, L. , et al., DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosensors & Bioelectronics , 2017, 89, 280 - 292.


33. Liu, C. , et al., Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone. Acs Applied Materials & Interfaces , 2016, 8 (44), 29997 - 30004.


32. Liang, L. et al., Charge-tunable insertion process of carbon nanotubes into DNA nanotubes. Journal of Molecular Graphics & Modelling , 2016, 66, 20 - 25.


31. Zhao, K., et al., Ductile mechanisms of metals containing pre-existing nanovoids. Computational Materials Science , 2016. 125: p. 36 - 50.


30. Zhang, Z., et al., Steered molecular dynamics study of inhibitor binding in the internal binding site in dehaloperoxidase-hemoglobin. Biophysical Chemistry , 2016. 211: p. 28 - 38.


29. Xu, Q., et al., Ligand-triggered electrostatic self-assembly of CdS nanosheet/Au nanocrystal nanocomposites for versatile photocatalytic redox applications. Nanoscale , 2016. 8(45): p. 19161 - 19173.


28. Sui, C., et al., A study of mechanical peeling behavior in a junction assembled by two individual carbon nanotubes. Carbon , 2016. 107: p. 651 - 657.


27. Lu, Z., et al., Design of Heterogeneous Nuclei for Lateral Crystallization via Uniaxial Assembly of Cellulose Nanocrystals. Crystal Growth & Design , 2016. 16(8): p. 4620 - 4626.


26. Cao, P., et al., Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus. Nanotechnology , 2016. 28(4): p. 045702.


25. Shen, J. W. , et al., On the loading mechanism of ssDNA into carbon nanotubes. Rsc Advances , 2015, 5 (70), 56896 - 56903.


24. Wu, J., et al., Mechanical instability of monocrystalline and polycrystalline methane hydrates. Nature Communications , 2015. 6(1): p. 8743.


23. Wu, J., et al., Structural instability and mechanical properties of MoS2 toroidal nanostructures. Physical Chemistry Chemical Physics , 2015. 17(48): p. 32425 - 32435.


22. Wu, J., et al., Deformation and fracture of nano-sized metal-coated polymer particles: A molecular dynamics study. Engineering Fracture Mechanics , 2015. 150: p. 209 - 221.


21. Šesták, P., et al., Extraordinary deformation capacity of smallest carbohelicene springs. Physical Chemistry Chemical Physics , 2015. 17(28): p. 18684 - 18690.


20. Zhang, Z.-S., et al., Peptide encapsulation regulated by the geometry of carbon nanotubes. Biomaterials , 2014. 35(5): p. 1771 - 1778.


19. Zhang, Z., et al., Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynski's equality. The Journal of Chemical Physics , 2014. 140(3): p. 034706.


18. Wang, C., et al., Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading. Carbon , 2014. 80: p. 279 - 289.


17. Odegard, G.M., et al., Predicting mechanical response of crosslinked epoxy using ReaxFF. Chemical Physics Letters , 2014. 591: p. 175 - 178.


16. Zhao, J., et al., Thermal conductivity of carbon nanocoils. Applied Physics Letters , 2013. 103(23): p. 233511.


15. Wu, J.Y., J.Y. He, and Z.L. Zhang, Fracture and negative Poisson’s ratio of novel spanned-fullerenes nanotube networks under tension. Computational Materials Science , 2013. 80: p. 15 - 26.


14. Wu, J., et al., Carbon Nanotubes: Nanohinge-Induced Plasticity of Helical Carbon Nanotubes (Small 21/2013). Small , 2013. 9(21): p. 3545 - 3545.


13. Wu, J., et al., Effect of chain architecture on the compression behavior of nanoscale polyethylene particles. Nanoscale Research Letters , 2013. 8(1): p. 322.


12. Wu, J., et al., Giant Stretchability and Reversibility of Tightly Wound Helical Carbon Nanotubes. Journal of the American Chemical Society , 2013. 135(37): p. 13775 - 13785.


11. Zhang, H.Y., et al., Effect of hole size on the fracture of graphene nanomesh. 2012.


10. Quan, Y. , et al., Lamellar organic-inorganic architecture via classical screw growth. Crystengcomm ,2012, 14 (21), 7184 - 7188.


9. Wu, J., et al., Effect of Nanoparticles on Oil-Water Flow in a Confined Nanochannel: A Molecular Dynamics Study, in SPE International Oilfield Nanotechnology Conference and Exhibition. 2012 p. SPE-156995-MS.


8. Wu, J.Y., et al., Role of Five-fold Twin Boundary on the Enhanced Mechanical Properties of fcc Fe Nanowires. Nano Letters , 2011. 11(12): p. 5264 - 5273.


7. Wu, J., et al., Atomistic simulation of metal-polymer adhesion. Proceedings of the 24th Nordic Seminar on Computational Mechanics, Helsinki, Finland. , 2011: p.30 - 33


6. Chu, X. , et al., Unique Roles of Acidic Amino Acids in Phase Transformation of Calcium Phosphates. J Phys Chem B , 2011, 115 (5), 1151 - 1157.


5. Chen, Y., et al., Molecular simulation of CO2/CH4 permeabilities in polyamide–imide isomers. Journal of Membrane Science , 2010. 348(1): p. 204 - 212.


4. Zhang, Q., et al., Structure-related diffusion in poly(methylmethacrylate) / polyhedral oligomeric silsesquioxanes composites: A molecular dynamics simulation study. Journal of Membrane Science , 2009. 342(1): p. 105 - 112.


3. Zhang, Q., et al., Microstructure dependent diffusion of water–ethanol in swollen poly(vinyl alcohol): A molecular dynamics simulation study. Chemical Engineering Science , 2009. 64(2): p. 334 - 340.


2. Wu, J.Y., et al., Molecular Simulation of Water/Alcohol Mixtures’ Adsorption and Diffusion in Zeolite 4A Membranes. The Journal of Physical Chemistry B , 2009. 113(13): p. 4267 - 4274.


1. Yang, J.Z., et al., Analyzing diffusion behaviors of methanol/water through MFI membranes by molecular simulation. Journal of Membrane Science , 2008. 318(1): p. 327 - 333.


可燃冰与冰课题组